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1 FIELD OF THE INVENTION

[0001] This invention is related to the design, analysis, and construc-

tion of optical components and systems for radio frequency (RF), or higher
frequency, temporally modulated optical wavefronts, and in particular, wave-

fronts in optical time-of-flight or phase measurement instruments using dis-

persive optical elements in the optical train. Elements from communications

theory, including amplitude modulation (AM) and analysis in the Fourier
transform frequency domain are unified with classical optics in order to cor-

rect for wavefront distortion of a modulation envelope at the beat note fre-

quency produced by two optical carrier sidebands, or a group of optical side-
bands, in order to optimize measurement, of pulse, chirp, phase, or the like

systems wherein the measurement is integrated over an area of the wavefront

at a detector, and demodulated at the modulation frequency, or heterodyned

to an intermediate frequency (IF).

2 BACKGROUND OF THE INVENTION

2.1 Amplitude Modulation

[0002] RF temporal modulation techniques for communications appli-

cations are well know in the art. For example, Principles of Communication
Systems, Taub and Schilling [1] is one of many standard electrical engineer-

ing textbooks which include sections on amplitude modulation. Chapter 3,

“ Amplitude-modulation Systems ”, the disclosure of which is incorporated

by reference herein, provides a good refresher on the theoretical principles and
nomenclature used in AM communications. The terms modulating, mixing,

heterodyning, baseband, carrier, upper sideband, lower sideband, demodula-

tion, recover, detection, single-sideband, double-sideband, supressed-carrier,
narrow-band, square-law detector, and others are well known in the art as

described therein, and will be assumed to be defined accordingly, unless ex-

precessly noted otherwise.

[0003] The Art of Electronics, Horowitz and Hill [2] is another stan-
dard reference which describes amplitude modulation radio in sections 13.14

and 13.15, the disclosure of both of which are incorporated by reference
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herein.

2.2 Classical Optics

[0004] Optical system design techniques for conventional quasi-time-
invariant imaging and non-imaging applications are well known in the art.

The technical literature has a rich heritage of rules of thumb, first order ap-

proximations, technical nomenclature, and fabrication techniques. Standard
references include: Fundamentals of Optics, Jenkins and White [3]; Principles

of Optics, Born and Wolf [4]; and many others.

[0005] With modern computers, and measuring and testing instru-

mentation, it is now common to correct for higher order time-invariant aber-
rations and to optimize designs involving many degrees of freedom, including

choices of materials, optical element geometry, and systems architectures.

[0006] For example, there are a number of excellent computer mod-

eling tools available for analysis and engineering of optical elements and sys-
tems, such as: ZEMAX, available from Zemax Development Corp.; CODE-V,

available from Optical Research Associates; Optica 3, a Mathematica pack-

age available from Wolfram Research, Inc.; and others. US 7,469,202 and US
2009/0143874 to Dowski et al., the disclosure of both of which are incorpo-

rated by reference herein, disclose a method for optimizing both optical and

digital systems in combination.

[0007] Some of these tools do use analysis of modulation in the spa-
tial domain, such as the modulation transfer function (MTF), to model such

things as the capability of an optical system to resolve line pairs. However,

none of these tools are designed to work with RF or higher temporally mod-
ulated wavefronts, i.e., they are designed for time-invariant applications.

2.3 Optical Amplitude Modulation

[0008] Hereinafter the term “optical amplitude modulation” (OAM)
will be understood to mean modulation of the amplitude, power, phase, po-

larization, frequency, etc. of electromagnetic radiation, modulated at RF,

microwave (MW), of terahertz (THz) frequencies in the time domain, so as
to produce optical sideband frequencies that propagate at different velocities
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in a dispersive medium. As will be shown hereinbelow, OAM can include a
carrier, but the term will also be understood to apply to suppressed carrier

architectures that produce beat notes, e.g., as by interference between two

tuned lasers, which act as sidebands.
[0009] Such things as spatial amplitude modulation of images by

line pairs, and low frequency temporal modulation by such things as chop-

per wheels, and lock-in amplifiers will be specifically noted, so as not to be

confused with the default use of the term OAM, hereinbelow.

2.4 Optical Test Methods

[0010] Optical test methods are well known in the art for imaging op-
tical components. For example, Optical Shop Testing, Daniel Malacara [5] is

a comprehensive reference on the subject, including such topics as interfer-

ometry, Ronchi patterns, Moiré, etc. Low frequency phase modulation, or

discrete steps in phase, is used in interferometry and Moiré, however these
techniques are quasi-time-invariant and do not fit the criteria for OAM as

defined hereinabove.

[0011] There are no known standard testing methods for optical
components as to OAM under the definition hereinabove. Moreover, there are

no known standard commercial catalog terms, nomenclature, or specifications

to even describe OAM parameters of passive optical components.

2.5 Aberrations

[0012] Classical time-invariant lens aberrations are well known in the

art. Standard references include: Jenkins and White [3], Born and Wolf [4],
and others. A good handbook covering aberrations and general optics is

chapter 1, “Fundamental Optics”, in the Melles Griot Catalog X [6], the

disclosure of which is incorporated by reference herein.

[0013] Section 3 of the Melles Griot Catalog X explains wavefront
distortion, including how it is defined for product specifications. The first

two paragraphs state;

Sometimes the best specification for an optical component is its effect

on the emerging wavefront. This is particularly true for optical flats,
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collimation lenses, mirrors, and retroreflectors where the presumed
effect of the element is to transmit or reflect the wavefront without

changing its shape. Wavefront distortion is often characterized by

the peak-to-valley deformation of the emergent wavefront from its
intended shape. Specifications are normally quoted in fractions of a

wavelength.

Consider a perfectly plane, monochromatic wavefront, incident at an

angle normal to the face of a window. Deviation from perfect sur-

face flatness, as well as inhomogeneity of the bulk material refractive

index of the window, will cause a deformation of the transmitted
wavefront away from the ideal plane wave. In a retroreflector, each

of the faces plus the material will affect the emergent wavefront. Con-

sequently, any reflecting or refracting element can be characterized
by the distortions imparted to a perfect incident wavefront.

[0014] It will be shown that the notion of wavefront distortion needs

to be extended to distortions of a beat note produced by an ideal modulated

wave, and the specification needs to be included in engineering data for an

optical product.

2.6 Frequency Domain

[0015] The use of the Fourier transform in the spatial domain is well
known in the optics art for such things as the modulation transfer function

(MTF), point spread function (PSF), and optical transfer function (OTF).

See Applied Optics, Levi [7] section 3.2, “ Spread and Transfer Functions ”,

the disclosure of which is incorporated by reference herein. Introduction
to Fourier Optics, Goodman [8]; is a standard reference which will be re-

ferred to in some examples. Linear Systems, Fourier Transforms, and Optics,

Gaskill [9] is another.
[0016] The Fourier transform in the time domain is well known in the

electrical engineering art. For example, The Fourier Transform and Its Ap-

plications, Ronald N. Bracewell [10] is a standard reference used by electrical

engineers. Electrical engineers are also well versed in the use of the Laplace
transform, which is closely related to the Fourier transform. The Laplace
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transform is well suited to electrical engineering problems as illustrated in
Network Analysis, M.E. Van Valkenburg [11].

[0017] However, there are no known uses of the Fourier or Laplace

transforms in the literature which transform from the time domain to the
frequency domain for imaging optical system design, and OAM in particular.

While the analysis presented hereinbelow can be developed using either the

Fourier or Laplace transforms, the Fourier transform is more familiar to those

skilled in the art of optics, and electrical engineers are well versed in both,
so the Fourier transform will be used for convenience.

2.7 Communications Theory

[0018] It will be recognized that optics and communications share much

in common. Levi [7], devotes Chapter 3 to, “Communications Theory Aspects

of Optical Images”. In the opening paragraph, published in 1968, Levi states;

It seems safe to say that systems using optical images are usually
concerned with communications: the transfer or acquisition of in-

formation. We do not refer here primarily to communication by

modulated light beams but rather to spatially modulated light: “the

picture worth a thousand words.”

[0019] The first paragraph of the Introduction to Goodman’s book,
first published in 1968, states;

Since the late 1930s, the venerable branch of physics known as optics

has gradually developed ever-closer ties with the communication and

information sciences of electrical engineering. The trend is under-
standable, for both communication systems and imaging systems are

designed to collect or convey information. In the former case, the in-

formation is generally of a temporal nature (e.g., a modulated voltage
or current waveform), while in the latter case it is of a spatial nature

(e.g., a light amplitude or intensity distribution over space), but from

an abstract point of view, this difference is a rather superficial one.

[0020] Chapter 10 of Goodman [8] is titled, “Fourier Optics in Optical

Communications”. This chapter was added in the 2005 edition of the book.
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However, the subject matter is drawn to fiber optics and does not address the
subject of the invention disclosed herein. It describes the effects of dispersion

in the classical terms of group velocity.

[0021] Systems and Transforms with Applications in Optics, Pa-
poulis [12] begins the preface, which was also published in 1968, with the

following observation;

In recent years, a trend has been developing toward greater inter-

action between electrical engineering and optics. This is not only
because optical devices are used extensively in signal processing, stor-

age, pattern recognition, and other areas, but also because the under-

lying theory is closely related to the theory of systems, transforms,

and stochastic processes. In fact, whereas in system analysis the
Fourier integral is an auxiliary concept, in diffraction theory it rep-

resents a physical quantity; whereas only a limited class of electrical

signals need to be treated as stochastic processes, optical waves are

inherently random. The following list illustrates the striking parallels
between these two disciplines.

Fresnel diffraction: output of a filter with quadratic phase
Fraunhofer field: Fourier transform

Lens: linear FM generator

Focal plane field: Fourier transform

Contrast improvement: filtering
Apodization: pulse shaping

Coherence: autocorrelation

Michelson interferometer: correlometer consisting of a delay line and
an adder

Fabry-Perot interferometer: narrow-band filter

[0022] All three authors actually teach away from the utility of work-

ing with optical systems in the time domain. Moreover–over 40 years later–

there are no known software tools or standard references that rigorously treat
temporally modulated light, or OAM, in combination with imaging optics

design and analysis, which this invention addresses. It will be shown that

another parallel can be added to Papoulis’ observations;
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Dispersion: communications theory
[0023] One possible reason for this omission from the literature is that

OAM systems are somewhat esoteric and heretofore religated primarily to

time-of-flight instrumentation. Another reason is that electro-optical system
designs naturally break between the classical optics, and electronics systems

disciplines; i.e., the optical engineer takes the optical design to the detector,

and the electronics engineer picks it up from the detector. Subtle effects in the

optics due to the modulation, such as dispersion, can easily be missed. This
invention teaches the effects of OAM and offers suggestions for minimizing

negative effects.

2.8 Types of detectors

[0024] Most electro-optical systems are designed for imaging, signal

collection, spectroscopy, condensing, projection, etc. If an optical signal is

temporally modulated, it is usually low frequency–such as chopping to lock-
in on an optical signal; or slowly incremented in spatial phase to do phase

shift detection, as described in chapter 13 of Optical Shop Testing [5]. His-

torically, the output of an imaging optical system was a human viewer, film,
photoresist, or the like. Nowadays, focal plane arrays, such as CCD and

CMOS cameras, are probably the most common sensor at the output end of

an optical system. In all of these cases, the output is typically integrated

over a period of time, to improve the signal-to-noise ratio, remove 120 Hz
flicker of artificial lighting, etc. Since the signal is integrated over time, any

higher frequency temporal modulation is removed by low pass filtering of the

detector integration period. For systems designed for spectroscopy, temporal
modulation is typically not a concern. Optical systems such as these can be

designed using classical techniques.

[0025] Optical systems designed for signal collection, can use fast

single channel detectors which are capable of detecting RF, MW, or THz
temporal modulation. In most of these systems, applications such as fiber

optics, radar, radio astronomy, satellite dishes, microwave communications,

etc., the optical path is fixed, or the entrance pupil is flooded and thus the
detector sees a fixed spatial configuration with some variation in the power

or phase of the signal communicating information.
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[0026] It will be shown that optical systems employing curved reflect-

ing surfaces (catoptric systems), such as radio telescopes, optical telescopes,
radar systems, etc. do not use dispersive elements, and thus are much sim-

pler to design than refracting (dioptric systems) or combined reflecting and

refracting (catadioptric systems) designs. This is explained in some detail in
US 6,426,834 to Braunecker et al., the disclosure of which is incorporated by

reference herein. Optical systems such as these may benefit from the disclosed

invention, but classical techniques may also be sufficient.

2.9 Electronic Distance Measurement

[0027] There is a small, but significant, field of applications which

combine optical systems with fast analog detectors, which are a true hybrid
of imaging and communications–which this invention addresses. Electronic

Distance Measurement, also called Electromagnetic Distance Measurement

(EDM); and absolute distance measurement (to differentiate it from laser

interferometry), also called absolute distance meters (ADM); began develop-
ment in the mid 1960s. The patent literature is rich with inventions in EDM.

US 3,365,717 to Holscher; US 3,508,828 to Froome et al.; and US 3,619,058

to Hewlett et al., the disclosure of all three of which are incorporated by
reference herein, were among the early US patents in the field.

[0028] EDM presents unique optical challenges, which will be ex-

plained in detail. Electromagnetic Distance Measurement, Burnside [13], is

a good introduction to the fundamentals. Selected Papers on Laser Distance
Measurements, Bosch and Lescure [14] is a good collection of the non-patent

literature. Electronic Distance Measurement, Rüeger [15], presents the theory

of operation of many EDM instruments.
[0029] In the opening paragraph, Rüeger states:

Historically, the development of electro-optical distance meters evolved

from techniques used for the determination of the velocity of light.

Fizeau determined the velocity of light in 1849 with his famous cog-

wheel modulator on a line of 17.2 km length: Light passed through
the rotating cogwheel, traveled to a mirror at the end of the line,

was reflected and returned to the wheel where the return light was
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blocked off by the teeth at high revolutions of the wheel. Fizeau’s
experiment employed for the first time the principle of distance mea-

surement with modulated light at high frequencies.

For details of Fizeau’s experiment, see Chapter 1 of Jenkins and White[3],

the disclosure of which is incorporated by reference herein.
[0030] Commercially available EDM instruments are typically com-

bined with two angle measurements, as with a theodolite, and used in high

precision surveying instruments such as surveying total stations, also known
as tacheometers; laser trackers; laser scanners; and the like. These instru-

ments are available from companies such as Leica Geosystems, FARO Tech-

nologies, Topcon, Sokkia, Trimble, Pentax, API, and others. EDMs are also

available in consumer priced, lower precision, distance only instruments avail-
able in the hardware store. While the prior art deals with the bulk effects

of dispersion in the atmosphere, to correct the speed of light for tempera-

ture, humidity, and pressure; no known prior art deals with dispersion within

the instrument optical design, or inhomogeneities of the wavefront across the
plane of the beam, due to dispersion of the optical elements, in particular.

[0031] One EDM design is disclosed in US 5,455,670 (’670) to Payne

et al., the disclosure of which is incorporated by reference herein. In ’670,
a laser is modulated at 1500.000 MHz and the reflected laser beam phase is

detected by a PIN detector. The detected signal is mixed with a coherently

generated local oscillator at 1500.001 MHz to produce a 1 kHz IF, which is

related to the phase of the 1500 MHz modulation signal, and the distance
to a reflective target. Many other architectures, including polarization mod-

ulation, pulsed, and chirped systems, are in use and are well known in the

art. Most EDMs use hollow retroreflectors or solid glass corner cubes for the
target to be measured, as is well known in the art. US 7,101,053 to Parker,

the disclosure of which is incorporated by reference herein, provides a good

survey of the topic.

[0032] In the development of the ’670 invention, the Model PSH97,
it was observed that the apparent distance, or phase of the detected beat

note signal, was slightly dependent on the size of the return beam. For

example, if an iris was placed at the objective lens, the measured distance
changed slightly as the iris was opened or closed. It was also observed that
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the apparent distance was slightly dependent on which part of the expanded
beam was retroreflected back to the instrument. For example, the apparent

distance was found to be slightly dependent on the pointing of the beam,

i.e., if the beam was not centered on the retroreflector, the distance changed
with the pointing. This was also observed in experiments with a Topcon

total station. The source of the error was not determined in the course

of the development of the instruments for the National Radio Astronomy

Observatory (NRAO), Robert C. Byrd Green Bank Telescope (GBT) project.
Subsequent thought and investigation as to the source of the error gives rise

to the instant invention.

2.10 Other Preferred Embodiments

[0033] While modulation of light at microwave frequencies is well known

in the art, rapid advances have been made in the generation of terahertz

(THz) waves, which span the spectrum between microwaves and infrared
radiation. For example, US 7,684,023 to Kang et al., discloses Apparatus

and method for generating THz wave by heterodyning optical and electrical

waves. It will be recognized that the invention will have application for these
wavelengths also.

[0034] While radio telescopes employ catoptric main reflectors, many

receivers employ dielectric lenses to correct for aberrations of the main reflec-

tor, subreflector, or other optical elements, and thus temporally modulated
signals, such as pulsars (rotating neutron stars that emit light pulses at fre-

quencies up to ≈ 1 kHz) may be subject to additional dispersion due to the

optics. This could also be a source of error for very long baseline interferome-
try (VLBI) as explained in Interferometry and Synthesis in Radio Astronomy,

Thompson, Moran, and Swenson [16].

[0035] While the invention will be illustrated by preferred embodi-

ments and figures related to EDM, the invention is only limited by the claims,
and other embodiments employing the spirit of the invention will be recog-

nized by those skilled in the art. For example, the same principles may be

applied to instruments designed as refractometers to measure index of re-
fraction of materials, chemical composition, temperature, humidity, pressure,

atmospheric turbulance refractivity structure constant C2
n, mechanical vibra-
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tions, or the like.

3 BRIEF SUMMARY OF THE INVENTION

[0036] The specification discloses a theoretical foundation explaining

the effects of dispersion as it relates to optical systems–and electronic distance

measurement in particular.
[0037] In one embodiment of the invention, a method provides steps

for analyzing an optical system at the optical frequency, and for modeling

a much lower frequency beat note wavefront produced by optical amplitude

modulation.
[0038] In another embodiment of the invention, an achromatic lens

provides for wavefront shaping of a beat note wavefront.

[0039] In yet another embodiment of the invention, an optical appa-
ratus provides aberration corrections for the beat note wavefront.

[0040] The need for engineering data related to optical amplitude

modulation is presented.

4 BRIEF DESCRIPTION OF THE DRAWINGS

[0041] FIG. 1 is a diagram illustrating the effect of a phase shift in
the frequency domain.

[0042] FIG. 2A is a 3D digram illustrating the effect of a phase shift

and amplitude modulation in the frequency domain.
[0043] FIG. 2B is a diagram in the complex plane of the positive

carrier and sidebands.

[0044] FIG. 2C is a diagram in the complex plane of the negative

carrier and sidebands.
[0045] FIG. 3 is a diagram illustrating the interference of an upper

sideband and a lower sideband to generate a beat note.

[0046] FIG. 4 is a diagram illustrating the interference of an upper
sideband and a lower sideband to generate a beat note, and the effect of a

phase shift on the beat note.
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[0047] FIG. 5 is a diagram illustrating Fermat’s principle for an

ideal lens.
[0048] FIG. 6 is a diagram illustrating the differential phase shift of

the upper and lower sidebands through a dispersive lens.

[0049] FIG. 7 is a diagram illustrating the effect of a window in a
converging beam.

[0050] FIG. 8 is a diagram illustrating reflective optics.

[0051] FIG. 9 is a diagram illustrating matching the sidebands to a

resonance in the index of refraction.
[0052] FIG. 10 is a block diagram of a method for designing an

OAM optical system.

[0053] FIGs. 11A and 11B illustrates a method for measuring
wavefront distortion.

5 DETAILED DESCRIPTION OF THE INVENTION

[0054] For a complete understanding of the invention, and in order

to develop a better understanding of the physics involved in an OAM wave

traveling through a dispersive medium, a derivation from first principles,
heretofore unknown in the literature, will be developed from a combination

of classical optics and communications theory perspective.

[0055] Most optics books, and even introductory level physics books

covering sound and quantum mechanics, give a brief explanation of the su-
perposition, or interference, of waves. The underlying information in a super-

position of waves is commonly described as the beat note, envelope, packet,

or group, as is well known in the art. For example, chapter 12 of Jenkins and
White [3], the disclosure of which is incorporated by reference herein, gives

an example of the superposition of waves of slightly different frequencies and

derives the group velocity of a wave packet. Equation 12p of Jenkins and

White derives the group velocity u as

u = v − λ
dv

dλ
(1)

where v is the wave velocity and λ is the wavelength.
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[0056] The derivation herein will be somewhat more tedious, but will

provide a better understanding of the mechanisms. The velocity of the enve-
lope of two superpositioned waves, or the beat note, traveling in a dispersive

medium is slowed down, or retarded in time, in most cases. As will be shown

hereinbelow, there are resonances wherein the dispersion dv
dλ can be zero or

negative. The conection between equation 1 and the design of optical systems

for EDM needs to be developed in more detail in order to understand the

subtleties.

[0057] As Rüeger [15] points out, EDM can also be thought of as a
measurement of time delay. It will be shown that the apparent time delay

produced by dispersion produces a delay which must be corrected in order

to measure distance by EDM. It will also be shown that the time delay may
depend on such things as the path of a ray through the optical system, and

thus the delay may not be homogeneous across a beam, or a constant under

all conditions.

[0058] This is a salient feature of the disclosure which will be em-
phasized.

[0059] For example, as will be shown hereinbelow, the delay of an

OAM signal for a ray through the center of a lens is not the same as the

delay for a ray through the edge of the lens. An OAM point source at the
focal point of a convex lens designed for a carrier wavelength will produce a

plane wave with a flat wavefront for the carrier wave, but the modulated wave

produced by the superposition of two sidebands to the carrier, as produced
by amplitude modulation, will be distorted. This can be visualized from

Fermat’s principle, which is explained in section 1.9 of Jenkins and White [3],

and in more detail hereinbelow.

[0060] It will be shown that in general, optical systems have a hereto-
fore unrecognized aberration within the instrument due to differential phase

delays of the sidebands of a modulated signal across a wavefront.

5.1 A Traveling Wave in the Time Domain

[0061] Turning now to first principles to better illustrate the invention.
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A traveling wave ψ(x, t) is most often described as

ψ(x, t) = cos(ωt − kx − φ) (2)

where x is distance, t is time, ω is the angular frequency, k is the wave

number, and φ is a phase constant. The wave number k is

k =
2π

λ
(3)

where λ is the wavelength. The wavelength λ is

λ =
v

ν
(4)

where v is the velocity, ν is the frequency, and ν = ω/(2π). The wave number

k can be written

k =
2πν

v
. (5)

For light,
v = c/n (6)

where c is the speed of light, and n is the index of refraction. The traveling

wave ψ(x, t) in equation 2 can be written for a light wave of frequency ν

traveling in a medium with index of refraction n as

ψ(x, t) = cos(2πνt − 2πnν

c
x− φ). (7)

[0062] In general, a cos function shifted by a phase angle β can be
written as a combination of cos and sin functions, e.g.,

cos(α − β) = cos(α) cos(β) + sin(α) sin(β). (8)

For example, if α is a function of time t, such as 2πνt and β is a function

of x, such as kx

cos(2πνt − kx) = cos(kx) cos(2πνt) + sin(kx) sin(2πνt) (9)

or two oscillating sinusoidal waves of frequency ν that each vary in amplitude

as a function of position x. This is cumbersome to visualize in general,

and as will be shown later becomes even more cumbersome when dealing

with products of sinusoidal waves. Fortunately the analysis is much easier
using mathematical tools already developed for electrical engineering and

mathematical physics.
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5.2 Fourier Transform Refresher

[0063] The Fourier, Laplace, and related transforms are well known in

the art, and there are many standard textbooks on the subject. As noted
hereinabove, the analysis can be conducted using either transform. For con-

venience, the more common Fourier transform will be used to illustrate the

invention. Notation can vary between authors, so the reader is directed to

The Fourier Transform and Its Applications, Ronald N. Bracewell [10], as
the reference which will be used herein.

[0064] Some background in Fourier analysis is assumed, but a brief

refresher on basic notation and theorems follows. The Fourier transform
operator F operates on a function f(t) to produce the Fourier transform

F (s)

Ff(t) = F (s) (10)

and the inverse operator F−1 operates on F (s) to produce f(t)

F−1F (s) = f(t) (11)

where

F (s) =
∫ ∞

−∞
f(t)e−i2πtsdt (12)

and

f(t) =
∫ ∞

−∞
F (s)ei2πtsds. (13)

[0065] There are several theorems that will be useful for the Fourier

analysis hereinbelow.

5.2.1 Similarity theorem

[0066] If f(t) has the Fourier transform F (s), then f(at) has the Fourier

transform |a|−1F (s/a).

5.2.2 Shift theorem

[0067] If f(t) has the Fourier transform F (s), then f(t − a) has the
Fourier transform e−i2πasF (s). It will be recognized that eiθ is described by

Euler’s equation, and

eiθ = cos(θ) + i sin(θ) (14)
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e−iθ = cos(θ) − i sin(θ) (15)

eiθeiφ = ei(θ+φ) (16)

and
|eiθ| = 1 (17)

[0068] This is illustrated graphically by Bracewell [10] for a cosinusoid
in figure 6.7 of his book. A function f(t) = cos(2πνt) has a Fourier transform

with real δ functions at s = ν and s = −ν. The δ function will be discussed

in detail hereinbelow. If f(t) is shifted by ε, i.e., f(t) = cos(2πνt − ε), or
cos(2πν{t − ε/(2πν)}) the δ functions in the Fourier domain are rotated by

a phase angle e−iεs/ν . Note that for s = ν, this rotates the δ function in the

negative, or clockwise, direction by e−iε; and for s = −ν, this rotates the delta

function in the positive, or counter clockwise, direction by eiε. In general,
the δ functions become complex quantities with both real and imaginary

components.

[0069] For ε = π/2, i.e., a shift of a quarter of the period, the

rotation for s = ν is e−iπ/2 and the shift for s = −ν is eiπ/2. Notice that the δ
function at ν becomes purely imaginary and negative, and the δ function at

−ν becomes purely imaginary and positive. Notice that a phase delay of ε =

π/2 for a cos is simply the sin function. The difference between the Fourier
transform of a cos and a sin is simply the rotation of the δ functions, and in

general all sinusoidal functions of frequency ν will have Fourier transforms of

δ functions at s = ±ν, with conjugate complex components.

5.2.3 Modulation theorem

[0070] If f(t) has the Fourier transform F (s), then f(t) cos(2πνt) has

the Fourier transform

F{f(t) cos(2πνt)} =
1

2
F (s− ν) +

1

2
F (s+ ν). (18)

[0071] The result of multiplying a function f(t) by cos(2πνt) in

the time domain is to replicate the Fourier transform into two sidebands

centered on s = ν and s = −ν in the transform domain. This is illustrated
by Bracewell [10] in figure 6.8 of his book. This property of modulation is

well known by those skilled in the art of amplitude modulation in fields such
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as AM radio and television. It is also well known in the field of optical fiber
communications. However, it is not covered in the optical imaging literature

which typically deals with quasi-temporally-invariant imaging systems such

as cameras, telescopes, illumination, spectroscopy, microscopy, color, etc.

5.2.4 Convolution theorem

[0072] It can be shown that the Fourier transform of the product of two

functions in the time domain is the convolution of the Fourier transforms in

the Fourier domain. If

Ff(t) = F (s) (19)

and

Fg(t) = G(s) (20)

then
Ff(t)g(t) = H(s) (21)

where

H(s) = F (s) ∗ G(s) (22)

where the convolution operator ∗ is defined

F (s) ∗G(s) ≡
∫ ∞

−∞
F (τ )G(s− τ )dτ. (23)

[0073] It can be shown that convolution is commutative

f ∗ g = g ∗ f (24)

associative

f ∗ (g ∗ h) = (f ∗ g) ∗ f (25)

and distributive
f ∗ (g + h) = (f ∗ g) + f ∗ h. (26)

[0074] Bracewell points out that the modulation theorem is a special

case of convolution of F (s) with F{cos(2πνt)}. This will prove to be a useful
concept in the analysis that follows hereinbelow.
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5.2.5 Sinusoidal modulation of a sinusoidal carrier wave

[0075] Going back to the modulation theorem and equation 18

F{f(t) cos(2πνt)} =
1

2
F (s− ν) +

1

2
F (s+ ν). (27)

If f(t) is a sinusoidal carrier of a first frequency ν1 and the modulation is a

second frequency ν2, the equation in the time domain is

cos(2πν1t)cos(2πν2t). (28)

Using the convolution theorem

F{cos(2πν1t)cos(2πν2t)} =
1

4
{δ(s− ν1) + δ(s+ ν1)} ∗ {δ(s− ν2) + δ(s+ ν2)}

(29)
where δ(s − ν1) is the impulse, or Dirac delta, function as described by

Bracewell in Chapter 5.

[0076] The δ function has several interesting properties, i.e.,

δ(s) = 0 for s 6= 0 (30)

and ∫ ∞

−∞
δ(s) ds = 1. (31)

Bracewell also describes the sifting property of the δ function in Chapter 5,

which will not be repeated herein. An important property is that
∫ ∞

−∞
δ(s− a)f(s)ds = f(a) (32)

which can be used to greatly simplify the convolution of δ functions. It can

be shown that

{δ(s− ν1) + δ(s+ ν1)} ∗ {δ(s− ν2) + δ(s+ ν2)} =

δ(s− (ν1 − ν2)) + δ(s− (ν1 + ν2)) +

δ(s+ (ν1 − ν2)) + δ(s+ (ν1 + ν2)) (33)

i.e., modulation in the time domain produces δ functions at s = ν1 − ν2;
s = ν1 + ν2; s = −(ν1 − ν2); and s = −(ν1 + ν2).
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5.2.6 Traveling wave in the Fourier domain

[0077] Returning to the traveling wave, in equation 7

ψ(x, t) = cos(2πνt−
2πnν

c
x − φ) (34)

can be cast in the form to apply the shift theorem

ψ(x, t) = cos(2πν{t −
2πnν

c x + φ

2πν
}) (35)

or

ψ(x, t) = cos(2πν{t − [
nx

c
+

φ

2πν
]}). (36)

[0078] A preferred embodiment of the invention will be described
hereinbelow in terms of a modulated carrier wave, where the frequency of the

carrier and the frequency of the modulation function are various frequencies.

In general, the index of refraction is dispersive–that is a function of frequency,

i.e., n = n(ν). This will be shown to lead to optical system aberrations
heretofore overlooked in imaging systems. The dispersion characteristics of

actual materials will be described in detail in the description of the preferred

embodiments.
[0079] Let

ψ1(x, t) = cos(2πν1{t− [
nx

c
+

φ1

2πν1
]}). (37)

where it will be understood that ψ1(x, t) is a wave with frequency ν1, phase

φ1, and n = n(ν). Applying the shift theorem,

F{ψ1(x, t)} = e−i2π[nx
c + φ1

2πν1
]s 1

2
{δ(s− ν1) + δ(s+ ν1)}. (38)

Applying the sifting theorem, F{ψ1(x, t)} = 0 for all s, except at s = ν1,

and s = −ν1. This requires that n be the value of n at frequency ν1, or

F{ψ1(x, t)} =
1

2
e−i(2πnν1

xν1/c+φ1) δ(s− ν1) +
1

2
ei(2πnν1

xν1/c+φ1) δ(s+ ν1) (39)

where nν1
is n(ν) at frequency ν1.

[0080] Equation 39 is better understood by an illustration, similar to

figure 6.7 in Bracewell [10]. FIG. 1 shows a pair of δ functions at s = ν1 10
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and s = −ν1 11 in the complex plane, with real axis 16, imaginary axis 17,
and frequency axis 18. The δ functions 10, 11 are shown initially along the

real axis 16. The δ function at s = ν1 10 is rotated in the complex plane in

the negative, clockwise, direction by 2πn1xν1/c+φ1 12 radians from the real
axis 16; and the δ function at s = −ν1 11 is rotated in the complex plane in

the positive, counter clockwise, direction by 2πn1xν1/c+φ1 13 from the real

axis 16. The result of shifting the δ functions 10, 11 in the time domain is

to rotate them in the complex frequency domain to form new δ functions 14,
15 at the same frequencies.

5.2.7 Optical Amplitude Modulated Traveling Wave in the Fourier Domain

[0081] Assume a monochromatic carrier wave, such as a laser source,

oscillates at a first frequency ν1, and is amplitude modulated by a second
monochromatic function, such as an electrical signal produced by a crystal

oscillator, at a second frequency ν2. It will be recognized that modulating

a carrier wave is well known in the art. For example, a laser diode may be

directly modulated by the electrical driving signal, or the beam may be exter-
nally modulated by chopping, polarization rotation, acousto-optical devices,

etc. It will also be recognized that it is not necessary that either the carrier or

modulator be of a pure single frequency, e.g., chopping, or pulsing, produces

additional harmonics. In general, the same analysis can be conducted for a
superposition of frequencies for both the carrier and modulation. While the

invention is explained in terms of a continuous wave (CW) system, the same

principles may be applied to pulsed time of flight systems, polarization mod-
ulated systems, etc. In order to more clearly illustrate the salient features of

the invention, the analysis will be in terms of a single carrer frequency ν1 and

a single modulation frequency ν2.

[0082] The modulation function can be written in the same form as
equation 37

ψ2(x, t) = cos(2πν2{t− [
nx

c
+

φ2

2πν2
]}) (40)

and the Fourier transform has the same form as equation 38.
[0083] In most schemes, modulation of the carrier corresponds to

multiplication of the power in the time domain. Since the output power can
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not be negative, the modulation is usually biased positive with a modulation
depth M , where 0 ≤ M ≤ 1. In this case, a modulated carrier can be

expressed as

ψ̃(x, t) = ψ1(x, t)(1 +Mψ2(x, t)). (41)

From equations 37 and 40

ψ̃(x, t) =

{cos(2πν1{t − [
nx

c
+

φ1

2πν1
]})}

{1 +M cos(2πν2{t − [
nx

c
+

φ2

2πν2
]})} (42)

which can be expanded as

ψ̃(x, t) =

cos(2πν1{t − [
nx

c
+

φ1

2πν1
]})

+M cos(2πν1{t− [
nx

c
+

φ1

2πν1
]})

cos(2πν2{t − [
nx

c
+

φ2

2πν2
]}). (43)

[0084] It will be recognized that the first term of equation 43

cos(2πν1{t− [
nx

c
+

φ1

2πν1
]}) (44)

is simply the carrier component ψ1(x, t) as already described in equation 37

in the time domain, and in equation 38 in the Fourier domain. The second
component is the more interesting term.

[0085] It will be helpful to transform into the Fourier domain, which

can be written

F{ψ̃(x, t)} = F{ψ1(x, t)}

+F{ M cos(2πν1{t− [
nx

c
+

φ1

2πν1
]})

cos(2πν2{t− [
nx

c
+

φ2

2πν2
]}) }. (45)
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Using the results of equation 38, this can be written as

F{ψ̃(x, t)} =

e
−i2π[nx

c + φ1
2πν1

]s 1

2
{δ(s− ν1) + δ(s+ ν1)}

+

{
e−i2π[nx

c + φ1
2πν1

]s M

2
{δ(s− ν1) + δ(s+ ν1)}

}

∗
{
e−i2π[nx

c + φ2
2πν2

]s 1

2
{δ(s− ν2) + δ(s+ ν2)}

}
. (46)

[0086] Applying the convolution theorem followed by the sifting theo-
rem for evaluating n(ν), as in equation 39

F{ψ̃(x, t)} =
1

2
e−i(2πxν1

nν1
c +φ1) δ(s− ν1)

+
1

2
ei(2πxν1

nν1
c

+φ1) δ(s+ ν1)

+
M

4
e−i{2πx (ν1+ν2)

nν(1+2)
c +(φ1+φ2)} δ(s− (ν1 + ν2))

+
M

4
e−i{2πx (ν1−ν2)

nν(1−2)
c +(φ1−φ2)} δ(s− (ν1 − ν2))

+
M

4
ei{2πx (ν1+ν2)

nν(1+2)
c +(φ1+φ2)} δ(s+ (ν1 + ν2))

+
M

4
ei{2πx (ν1−ν2)

nν(1−2)
c +(φ1−φ2)} δ(s+ (ν1 − ν2))

(47)

where: nν1 is nν at the carrier frequency, i.e., ν = ±ν1; nν(1+2) is nν at the
upper sideband, i.e., ν = ±(ν1 + ν2); nν(1−2) is nν at the lower sideband, i.e.,

ν = ±(ν1 −ν2). Note that nν is the same for positive and negative frequency.

[0087] Notice that in addition to the shifted carrier at δ(s − ν1) 14
and δ(s + ν1) 15, as shown in FIG. 1, the modulation function ψ2(x, t) of

modulation depthM at frequency ν2 gives rise to four additional sidebands of

amplitude M/4, as shown in FIG. 2A, at; δ(s− (ν1+ν2)) 21, δ(s− (ν1−ν2))

23, δ(s+(ν1+ν2)) 22, and δ(s+(ν1−ν2)) 24, and all four sidebands 21, 22,
23, 24 are rotated in the complex plane by different phase angles. Notice

that the sidebands are centered on the carrier frequency ±ν1 14, 15 and are
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spaced by the modulation frequency ±ν2 on either side of the carrier on the
frequency axis 18.

[0088] Notice that a phase shift in the positive frequency carrier ν1

14, such as due to x or φ1, rotates the transform in the complex plane with
respect to the real axis, and the sidebands 21, 23 rotate along with the

carrier 14. This is better illustrated in FIG. 2B, which is a view in the

complex plane 16, 17, looking down the frequency axis 18 in the negative

direction. As will be recognized by those skilled in the art, from equation 47,
the positive frequency carrier 14 is rotated with respect to the real axis 16

by angle 12. Also from equation 47, the upper sideband 21 is rotated with

respect to the carrier 14 by an additional angle 25. The lower sideband 23
is rotated with respect to the carrier 14 by angle 27. Notice that the two

sidebands rotate in opposite directions with respect to the carrier. The phase

shift of the modulation can be visualized as riding on the back of the carrier.

[0089] Also note from equation 47 that the magnitude of the rotation
25 of the upper sideband 21 is not exactly the same as the rotation 27 of

the lower sideband 23. This is because the upper sideband 21 is rotated by

a factor of nν(1+2)
, while the lower sideband is rotated by a factor of nν(1−2)

.
Due to dispersion, there is a slight difference between the sidebands. This

slight asymmetry is the heart of the dispersion problem.

[0090] The same analysis can be conducted for the negative frequency

carrier 15 as shown in FIG. 2C where negative frequency carrier 15 is rotated
by angle 13 which is the exact magnitude of rotation 12, but in the opposite

direction. Upper sideband 22 is rotated by angle 26 which is the exact

magnitude of rotation 25, but in the opposite direction. The lower sideband

24 is rotated by angle 28 which is the exact magnitude of rotation 25, but
in the opposite direction.

In general, a traveling wave can be expressed as a function of time t and

position x, and all six Fourier transform components are rotating in the
complex plane at different rates. Since the carrier 14 and the sidebands 21,

23 are shifted by different amounts for translations in x, it can be shown

that all three phasors do not repeat their respective phase angles 12, 25,

27 until x is shifted by an amount equivalent to the wavelength of the beat
note. Moreover, due to dispersion, the wavelength of the beat note is slightly
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longer.

5.3 Index of Refraction and Dispersion

[0091] The index of refraction n is well known in the art and will not be
explained in detail herein. Jenkins and White [3] contains a good review of

dispersion in Chapter 23, the disclosure of which is incorporated by reference

herein. SCHOTT North America, Inc. provides a wealth of information on
optical glasses on the internet. Publication TIE–29: [17], the disclosure of

which is incorporated by reference herein, is an excellent guide to the data.

[0092] It is customary to tabulate the index of refraction at the

Fraunhofer lines. From TIE–29, nC is at the red hydrogen line λ = 656.272 5
nm, nD is at the yellow sodium line λ = 589.293 8 nm, and nF is at the blue

hydrogen line λ = 486.132 7 nm. The principal dispersion is the difference in

n between the F and C lines, i.e., nF −nC , and is a frequently cited constant

for a particular glass. The index of refraction is modeled by the Sellmeier
dispersion equation

n2(λ) − 1 =
B1λ

2

(λ2 − C1)
+

B2λ
2

(λ2 − C2)
+

B3λ
2

(λ2 − C3)
(48)

where B1, C1, B2, C2, B3, and C3 are constants for each glass type.
[0093] The most common glass used in optical elements is BK7, and

will be used in the example problems herein. The SCHOTT data sheet on

BK7 [18], the disclosure of which is incorporated by reference herein, shows
nC = 1.514 32, nD = 1.516 73, nF = 1.522 38, and the principal dispersion

nF − nC = 0.008 054. The constants for the Sellmeier dispersion equation

are also in the data sheets for each glass type. While glass is the most

common material for optical components, it will be recognized that other
materials may be selected to advantage, depending on the wavelengths and

design constraints. Such materials may include plastics, gases, liquids–such

as specialty optical liquids available from companies such as Cargille-Sacher
Laboratories, Inc., or other dielectric materials.

[0094] Although it is customary to work in wavelength in the optics

industry, it is easier to work in frequency in the Fourier domain, where ν =

c/λ and c = 2.997 924 58 × 108 m/s. For example; at the C red line, νC =
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456 810.9 GHz; at the D yellow line, νD = 508 731.7 GHz; and at the F blue
line νF = 616 688.5 GHz.

[0095] To get a feel for the magnitude of the dispersion as a function

of frequency, consider the derivative of n with respect to ν, which can be
approximated at νD using the principal dispersion for BK7, or

∆n

∆ν
=

nF − nC

νF − νC

=
0.008 054

159 877.6 GHz
= 5.037 604 × 10−8/GHz. (49)

The change in n over a few GHz is very small–in fact it is much less than
the uncertainty of n for a batch of glass. As it will be shown, this subtle

change in n between the upper sideband and the lower sideband has a very

significant impact on the phase of the modulated wave, or the beat note

produced by the interference between the upper and lower sidebands. It will
be recognized that the Sellmeier dispersion equation may be differentiated

for a closer estimation at a specific wavelength, e.g., centered on a carrier

frequency ν1, but the approximation simplifies illustration of the idea.

5.3.1 Optical Amplitude Modulated Traveling Wave Propagating Through BK7 Glass

[0096] Some examples of modulated traveling waves ψ̃(x, t), propa-
gating through BK7 glass will be given. Returning to equation 47, as-

sume the carrier wave ψ1(x, t) in equation 37 is at the yellow D line, i.e.,

ν1 = νD = 508 731.7 GHz, and the index of refraction nν1
= nD = 1.516 73.

Returning to equation 40, assume the modulation wave ψ2(x, t) is modulating

the carrier at 1.5 GHz, i.e., ν2 = 1.5 GHz, which is a reasonable modulation

frequency used for electronic distance measurement. Also assume the glass

thickness is 10 mm—which is a reasonable order of magnitude thickness for
an optical window, or lens. Note that a modulation frequency of 1.5 GHz is

about 3 × 10−6ν1. Some instruments operate as low as one part in 10−6, but

they tend to be lower precision. Work underway in the THz range indicate

it would be expected to see the modulation increase to the order of 5 THz,
or one part in 10−2.
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5.3.2 Ignoring Dispersion

[0097] In the first example, assume the glass has no dispersion, i.e.,

nν(1+2)
= nν(1−2)

= nD, as shown in FIGs. 1, 2A, 2B, and 2C. Consider

the Fourier component of the positive frequency carrier component 14 of
equation 47, which is rotated by phase angle 12 and can be written as

Ψ+c = e−i(2πxν1
nν1

c +φ1) δ(s− ν1) (50)

where it will be understood that there is a symmetrical negative frequency

component 15 which is rotated by phase angle 13, and can be written as

Ψ−c = ei(2πxν1
nν1

c +φ1) δ(s+ ν1). (51)

[0098] We will ignore the amplitude and the negative frequency com-

ponent for now, since it is the phase that is of interest. Substituting into
equation 50,

Ψ+c = e
−i(2π 0.01m 508 731.7×109/s 1.51673

2.99792458×108m/s
+φ1) δ(s− 508 731.7 × 109/s)

(52)

or
Ψ+c = e−i(2π 25 738.095 3 +φ1) δ(s− 508 731.7 × 109/s). (53)

[0099] Notice that Equation 53 can be represented as a phasor rotat-

ing in the negative direction at νD with a phase angle 12 of −(2π 25 738.095 3 +

φ1). Since the phasor is mod(2π), the phase angle is −(2π 0.095 3 +φ1) radi-
ans, or the carrier entering a 10 mm thick window of BK7 glass with phase

φ1, undergoes 25 738 complete cycles plus 2π 0.095 3 radians when it exits the

other side of the window. Phasor notation is typically used for a single fre-
quency, where phasors can be combined. In this application, we will be using

phasors at the carrier, upper sideband, and the lower sideband frequencies,

so to avoid mistakes, the frequency will be explicitly tied to the phasor. The

phasor of the carrier frequency can be written

Ψ+c = δ(s− νD) 6 − (2π 0.095 3 + φ1) (54)

where the phase angle 12 is −(2π 0.095 3 + φ1).
[0100] Consider the positive upper sideband component 21 of equa-

tion 47, which can be written as Ψ+c hat

Ψ̂+c = e−i{2πx (ν1+ν2)
nν(1+2)

c
+(φ1+φ2)} δ(s− (ν1 + ν2)) (55)
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and the positive lower sideband component 23 of equation 47, which can be
written as Ψ+c check

Ψ̌+c = e−i{2πx (ν1−ν2)
nν(1−2)

c +(φ1−φ2)} δ(s− (ν1 − ν2)). (56)

Substituting in for the upper frequency νD + 1.5 GHz, the phase angle is the

sum of the phase angles 12 + 25

e−i(2π 25 738.171 2 +φ1 +φ2) δ(s− 508 733.2 × 109/s) (57)

or

Ψ̂+c = δ(s− (νD + 1.5 GHz)) 6 − (2π 0.171 2 + φ1 + φ2). (58)

Substituting in for the lower frequency νD − 1.5 GHz, the phase angle is 12
− 27

e−i(2π 25 738.019 4 +φ1 −φ2) δ(s− 508 730.2 × 109/s). (59)

or

Ψ̌+c = δ(s− (νD − 1.5GHz)) 6 − (2π 0.019 4 + φ1 − φ2). (60)

[0101] Notice the form of equation 47. The upper and lower sidebands

are a result of convolving the modulation function with the carrier func-

tion, i.e., the sidebands are spaced ν2 from the carrier ν1. Notice also that
the phases of the sidebands are rotated asymmetrically around the carrier.

It will be instructive to recast the upper and lower sideband phase angles

into components due to the carrier and components due to the modulation.

Equation 58 can be written

Ψ̂+c = δ(s− (νD + 1.5 GHz)) 6 − (2π(0.095 3 + 0.075 9) + φ1 + φ2) (61)

and equation 60 can be written

Ψ̌+c = δ(s− (νD − 1.5GHz)) 6 − (2π(0.095 3 − 0.075 9) + φ1 − φ2). (62)

[0102] In the example of a non-dispersive glass 10 mm thick, the car-
rier component Ψ+c emerges delayed by 25 738 complete cycles plus 2π 0.0953

radians. The upper sideband Ψ̂+c emerges delayed by 25 738 complete cycles

plus 2π(0.0953+0.0759) radians, and the lower sideband Ψ̌+c emerges delayed

by 25 738 complete cycles plus 2π(0.0953 − 0.0759) radians.
[0103] It can be shown that the asymmetric delay between the upper

and lower sidebands is the equivalent of a delay of the modulation envelope,
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of 2π 0.0759 radians of the 1.5 GHz modulation signal, or a time equivalent
to xnD/c. This can be expressed as a phasor for the modulation envelope of

Ψ+m = δ(s− 1.5 GHz)6 − (2π 0.0759 + φ2). (63)

5.3.3 Including Dispersion

[0104] Turning now to the more realistic case where the glass is disper-

sive. It will be shown how a small difference in the refractive index can have

a significant impact on the delay of the modulation envelope.
[0105] In the second example, using equation 49 to estimate the

dispersion, assume

nν(1+2)
= nD +

∆n

∆ν
1.5 GHz

= nD + 7.556 406 × 10−8 (64)

and

nν(1−2)
= nD −

∆n

∆ν
1.5 GHz

= nD − 7.556 406 × 10−8. (65)

Substituting back into equation 47, the dispersion results in the upper side-
band being shifted by an additional phase angle of 2π 1.282× 10−3 radians in

the negative direction, and the lower sideband being shifted in the positive

direction by almost the same magnitude, i.e., 2π 1.282 × 10−3 radians. Or

Ψ̂+c = δ(s− (νD + 1.5 GHz))

6 − (2π(0.095 3 + 0.075 9 + 1.282 × 10−3) + φ1 + φ2) (66)

and

Ψ̌+c = δ(s− (νD − 1.5GHz))

6 − (2π(0.095 3 − 0.075 9 − 1.282 × 10−3) + φ1 − φ2). (67)

As shown in equation 63, the modulation envelope can be expressed as a

phasor

Ψ+m = δ(s− 1.5 GHz)6 − (2π(0.0759 + 1.282 × 10−3) + φ2). (68)
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Note that the dispersion delayes the envelope by an additional 2π1.282×10−3

radians.

[0106] A phase shift of << 0.1λ is much less than the accuracy

of grinding a lens! However, the differential phase shift between the upper
sideband and lower sideband has a significant impact on a phase measurement

instrument–such as an electronic distance measurement instrument. Notice

that the dispersion results in an additional phase shift of the upper and
lower sidebands of 2π 1.282 × 10−3 radians. Notice that this is an additional

fractional delay of the modulation envelope of the 1.5 GHz signal of 1.282 ×
10−3 out of 0.075 9 or over 1.68%, i.e., a difference in the index of refraction

of 7.556 406× 10−8 produces a 1.68% increase in the delay of the modulation
signal through the glass! Notice that if this is not properly corrected, it would

result in an error of approximately 0.168 mm–which is a significant error for

precision EDM instruments.

[0107] An integrating detector, which collects energy over a period
of time, such as film or a CCD would not be sensitive to a small phase shift of

a fraction of the integration period. However, as will be shown hereinbelow,

the differential phase shift between the upper sideband and lower sideband
has a significant impact on a phase measurement instrument–such as an elec-

tronic distance measurement instrument. Moreover, it will be shown that the

phase shift for refractive optical elements, such as lenses and windows in a

converging, or diverging, beam are not constant over the wavefront.
[0108] An example will illustrate the effect. As shown in FIG. 3, a

10 Hz carrier modulated by a 0.5 Hz modulating signal, generates an upper

sideband 31 at 10.5 Hz, and a lower sideband 32 at 9.5 Hz. The power of the
beat note 33 is produced by the square of the sum of the upper 31 and lower

32 sidebands at 0.5 Hz. As shown in figure 12I of Jenkins and White [3], the

wavelength Λ of the beat note is

Λ =
λ1λ2

λ1 − λ2
(69)

where λ1 is the wavelength of the lower sideband 32 and λ2 is the wavelength

of the upper sideband 31. Note that the wavelength of the power is divided
by 2. In FIG. 3, the phase angle between the lower and upper sidebands is 0.

FIG. 4 shows the same functions, except the upper sideband 31 is delayed
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in phase by π.
[0109] Notice that the relative phase shift between the lower 32 and

upper sidebands 31 produces the same phase shift in the beat note 33. This

is a fundamental principle that warrants further illustration.
[0110] Consider a gedanken, or thought, experiment. In FIG, 3, if

the upper sideband 31, or the lower sideband 32 is shifted by a complete

period, the beat note 33 will be invariant. As shown in FIG. 4, delaying

the upper sideband 31 by π 34, shifted the beat note 33 by the same rela-
tive amount, i.e., π. This illustrates the fact that a differential phase shift

between the upper 31 and lower 32 sidebands corresponding to a fraction

of a micron produces a corresponding fractional phase shift of the beat note
33. Whereas the phase shift of the upper sideband 31 for an optical signal

may correspond to a fraction of a micron, the corresponding phase shift of

the much longer wavelength beat note may correspond to the equivalent of

millimeters. Moreover, shifting the upper sideband 31 and lower sideband 32
together, has minimal effect on the beat note 33. At frequencies of the order

of light, the effect on the beat note 33 would be practically undetectable.

This explains why a lens ground to an accuracy of λ/4 has little effect on the
beat note 33, yet the dispersion through 10 mm of glass can have a significant

effect on the beat note 33.

5.4 Suppressed Carrier and Other Modulation Systems

[0111] While amplitude modulation is the classical method for generat-

ing a beat note, it will be recognized that there are other ways to generate two

sidebands of slightly different frequency without a carrier. For example, US
3,656,853 to Bagley et al., uses a two frequency laser to produce two frequen-

cies separated by 500 kHz. US 5,784,161 to Bechstein et al., uses two lasers

which are tuned to produce the desired beat note. US 7,684,023 to Kang et

al., uses two lasers to produce THz waves. US 2010/0046003 to Le Floch
et al., uses tuneable lasers to produce chirped frequencies. US 5,781,334 to

Daendliker et al. teaches the generation of synthetic light wavelengths using

two light sources.
[0112] With OAM the sidebands are inherently coherent, and all

sidebands travel together over the same optical path lengths. This can be
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thought of much like Malacara [5] describes as common-path interferometry

in chapter 3 of his book. This results in a beat note with a practically infinite
coherence length, whereas dual sources may have shorter coherence lengths.

It will be recognized that it is not necessary that the carrier be narrowband.

In fact, although the invention has been illustrated in terms of a narrowband
carrier, the invention applies to broadband carriers also.

[0113] It will also be recognized that while the invention has been

described in an embodiment of a single beat note, it will be recognized that

other systems may be analyzed in the same spirit. For example, square
wave modulation can be analyzed as a superposition of harmonic sinusoidal

modulation functions. Frequency, phase, and polarization modulation can

also be analyzed using the same methodology.

5.5 Wavefront Through a Lens

[0114] Turning now to some examples, it will be shown how inhomo-

geneities in the OAM wavefront of the beat note can produce errors in EDM
instruments.

[0115] Consider an ideal converging lens 51, as shown in FIG. 5,

designed to focus an object at infinity to a plane at a distance equal to the
focal length f 52, i.e., designed for infinite conjugate ratio. While the inven-

tion is described by example of infinite conjugate ration, it will be recognized

that the same principles apply to other conjugate ratios, or adjustable conju-

gate rations–such as zoom lenses. A monochromatic light source at infinity
produces a plane wave 53 at the lens 51, and the lens 51 converts the plane

wave 53 to spherical waves 54 which focuses the plane wave 53 to a point

55 at the focal length 52. Lenses are routinely designed, built, and tested
that perform this function with wavefronts flat to an accuracy of a fraction

of the design wavelength λ.

[0116] In a simple explanation, the transformation of a lens can be

explained by Fermat’s principle which, in this example, requires the transit
time to be equal for all rays from the source, through the lens, to the focal

point. In the ideal case, all of the rays from a coherent source would converge

at the focal point in phase. From Fermat’s principle, a ray passing through

the optical axis 56A, 57A, 58A must be delayed through the lens 51 longer
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than a ray passing through the edge 56B, 57B, 58B of the lens 51, since
the ray passing through the edge 56B, 57B, 58B of the lens 51 must travel

farther to the focal point 55. Thus the lens, which has a higher index of

refraction n than air, is thicker in the center and thinner at the edges.
[0117] In the simple approximation, a thin lens can be constructed

by grinding the front and back surfaces to spherical surfaces designed by the

well known lens maker’s formula, as described in chapter 4 “Thin Lenses”

of Jenkins and White [3], the disclosure of which is incorporated by refer-
ence herein. The lens maker’s formula is derived in section 4.15 and can be

approximated as
1

p
+

1

q
= (n− 1)

(
1

r1
−

1

r2

)
(70)

where p is the object distance, q is the image distance, n is the index of

refraction for the lens and the index of refraction of the medium outside the
lens is assumed to be unity, r1 is the radius of curvature of the object side of

the lens, and r2 is the radius of curvature of the image side of the lens. The

focal length f is given by

1

f
= (n− 1)

(
1

r1
−

1

r2

)
(71)

or
1

p
+

1

q
=

1

f
. (72)

[0118] Goodman gives a more rigorous derivation in section 5.1 “A

Thin Lens as a Phase Transformation” [8], the disclosure of which is incor-
porated by reference herein. The idea is stated in section 5.1 as

A lens is composed of an optically dense material, usually glass with

a refractive index of approximately 1.5, in which the propagation

velocity of an optical disturbance is less than the velocity of air.
With reference to Appendix B, a lens is said to be a thin lens if a

ray entering at coordinates (x, y) on one face exits at approximately

the same coordinates on the opposite face, i.e., if there is negligible

translation of a ray within the lens. Thus a thin lens simply delays
an incident wavefront by an amount proportional to the thickness of

the lens at each point.
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[0119] The exact equations for the thickness function are developed

in section 5.1.1, and the paraxial approximation is given as a function of
(x, y). For the paraxial approximation

∆(x, y) = ∆0 −
x2 + y2

2

(
1

r1
−

1

r2

)
(73)

where ∆0 is the thickness at (x, y) = (0, 0). This can be cast in the form of

the focal length f as

∆(x, y) = ∆0 −
x2 + y2

2f(n − 1)
. (74)

Of course with a computer model, it is not necessary to make the approxi-

mations, and a computer model also works for aspherical lenses.

[0120] Notice that ∆(x, y) is quadratic as a function of the distance

from the center of the lens. Moreover, since the area of a ring is 2πr dr, the
wavefront distortion is weighted more at the outer part of a lens. For example,

most total stations project a large beam, and use large retroreflectors which

return beams twice the diameter of the retroreflector–which is typically three
inches in diameter. Since the objective lens of a typical total station is around

three inches, this wavefront distortion could introduce a systematic error in

the distance measurement.

[0121] In the examples developed hereinabove and illustrated in
FIGs 1, 2A, 2B and 2C, the phase shift was assumed to be uniform over the

plane, e.g., a plane wave and a flat optical window. In that case, the phase of

the OAM envelope is simply delayed by a constant, which is easily corrected

in an instrument. In the case of a lens, the analysis must be extended to
make the thickness of the glass, and thus the phase shift, a function of (x, y).

[0122] In the case of an OAM beam producing a beat note, Good-

man’s notion of a thin lens as a phase transformation would need to be
extended to at least two sideband wavefronts of frequencies (ν1 + ν2) and

(ν1−ν2), and a carrier wavefront of frequency ν1, with delays not only propor-

tional to thickness of the lens at each point, but also accounting for dispersion

in the refractive index.
[0123] The quotation above could be amended [as shown in square

brackets] to read.
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Thus a thin lens simply delays an incident wavefront [of a superpo-

sition of carrier frequency ν1 and sidebands (ν1 + ν2), and (ν1 − ν2) ]
by an amount proportional to the thickness of the lens at each point

[and the index of refraction at each respective frequency].

[0124] Ray tracings converge to the model based on the carrier ν1, but

the shape of the modulated, or beat note, wavefront will be dominated by the
dispersion and thickness inhomogeneity. For EDM applications, the optical

system is typically designed to collect the light and focus the energy on an

ideal point detector. The detector cannot respond to the optical frequency,

but is fast enough to respond to the much lower frequency of the power of
the beat note envelope. Conventional optical design techniques work fine

for modeling the collection of light on a detector, i.e., the optical paths of

the sidebands are almost identical to the carrier, and the ray tracings at the
carrier will model all 3 frequencies as to the time-invariant beam shaping.

[0125] In a more realistic case, the notion would also need to be

extended to a model for thick lenses. While this depth of analysis would

probably not be inviting to do manually, it is relatively simple to model
using optical design software.

[0126] Time-invariant lens aberrations are well known in the art as

described in chapter 9 “Lens Aberrations”, of Jenkins and White[3], the dis-
closure of which is incorporated by reference herein. For EDM applications,

most instruments are dealing with special imaging conditions, such as; infi-

nite conjugate ratio, narrow bandwidths, paraxial illumination, etc. Most of

the classical aberrations, such as coma and astigmatism are not particularly
important–although they may be for some optical systems and the invention

is not limited to simple optical systems, nor to EDM.

[0127] Two types of aberration will be particularly useful to illustrate
benefits of the invention. The term spherical aberration is used to describe

how rays passing through the outer edges of a lens don’t exactly pass through

the ideal focal point. It is well know in the art to correct for spherical

aberration by aspherizing the surfaces to make aspherical lenses. The term
chromatic aberration is used to describe how two wavelengths, or colors, don’t

exactly pass through the ideal focal point. More will be said about both of

these aberrations hereinbelow.
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[0128] In general, it is complicated to optimize the design of even a

thin lens for a monochromatic plane wave. The simplest approximation in the
lens maker’s formula in equation 70 shows that for a given focal length f and

frequency ν, there are choices of materials and thus the index of refraction

n and the radius of curvatures r1 and r2. A more realistic model is given for
thick lenses as described by Jenkins and White in chapter 5, “Thick Lenses”,

the disclosure of which is incorporated by reference herein. In the case of a

thick lens, equation 71 is better approximated by

1

f
= (n− 1)

(
1

r1
−

1

r2

)
+

(n− 1)2

n

tc
r1r2

(75)

where tc is the thickness through the center of the lens.

[0129] Lens and optical system design is now optimized for time-

invariant designs by computer modeling, using programs as described herein-

above. Computer models allow adjustments of all parameters such as wave-
length, materials, radius of curvature, thickness, focal length, diameter, etc.

in order to optimize the tradeoffs. Moreover, a system may comprise a num-

ber of optical elements which are routinely modeled in combination. It will
be shown that the models need to be modified to deal with OAM signals.

[0130] Returning to the example as shown in FIG. 5 of a plane

wave 53 focused by an ideal lens 51 to the focal point 55. In an EDM

instrument the plane wave may be collected by a small amplitude squared
(power) detector at the focal point, which detects all of the energy of the

plane wave collected by the lens. It will be recognized by those skilled in the

art that the ideal detector needs to be small in order to avoid the integration

of variable phase delays of the electrical signal over the detector, i.e., the
objective of EDM is to measure a single well defined time delay, which can

be used to calculate distance, or the like, and thus a single phase is required

to be measured.
[0131] For a finite size detector, the electrical signal produced at the

electrical output terminal is integrated over the various path lengths, from

the actual location of the signal conversion from light to electrical, to the

terminal. For example, radiation impinging on the center of the detector face
may produce an electrical signal which may propagate to the terminal with a

first time delay, while radiation impinging near an edge of the detector face
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may produce an electrical signal which may propagate to the terminal delayed
significantly longer than the first time delay. Where significantly longer will

be understood to be of the order of the time required for light, or an electrical

signal, to propagate 1 micron.
[0132] The integrated signal at the terminal will be weighted by the

power density and quantum efficiency of the detector (which may vary over

the detector) as well as the time delays of the wavefront of the beat note.

This is analogous to the requirement of a point source of light to produce a
well collimated beam, which is well known in the art.

[0133] The same configuration as shown in FIG. 5 may be used

with a modulated light source at the focal point 55 to produce a collimated
beam 53 by the lens 51. From the principle of reversibility, as explained in

section 1.8 of Jenkins and White [3], the disclosure of which is incorporated

by reference herein, the two cases are symmetrical. Some instruments launch

and receive from a common focal point using fiber optics, which approximates
a point source and a point detector. For example, WO/2003/062744A1 to

Bridges et al., and WO/2007/079600A1 to Meier et al., the disclosure of

both of which are incorporated by reference herein, use common fiber optic
launch and receive optics. For illustration purposes, it will be easier to show

the aberration of the beat note wavefront projected by a modulated point

source.

[0134] As shown in FIG. 6, a monochromatic and coherent point
source at the focal point 55 of an ideal lens 51 produces flat plane waves

53 radiating along the optical axis. In other words, the lens 51 is designed

such that the transit time for all rays from the monochromatic point source,

through the lens 51, produces a plane wave 53.
[0135] Now, as has already been shown, the transit time through

glass is slightly different for each wavelenght in a dispersive material, such

as glass. In the example hereinabove, it was shown that for an OAM signal,
the upper sideband is delayed slightly more than the lower sideband, and

the magnitude of the delay is directly related to the thickness of the glass.

The upper sideband 54 is shown greatly exaggerated to illustrate the effect

of dispersion in FIG. 6. Instead of a flat wavefront, as shown for the carrier
53, the upper sideband 54 wavefront is curved with a larger lag near the
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optical axis. Likewise, the lower sideband 55 is delayed slightly less that the
carrier 53. As a first approximation, the carrier 53, upper sideband 54, and

lower sideband 55 all produce flat wavefronts. The exaggerated differential

delays shown in FIG. 6 would typically only be a shift of a small fraction of
a wavelength, i.e., of the order of nanometers. However, it has been shown

that the envelope of the beat note 56 depends on the differential phase delay

between the upper 54 and lower 55 sidebands.

[0136] Thus it is clear that a lens designed to produce a flat wave-
front at the carrier will produce almost perfectly flat wavefronts at both

sidebands—but the differential phase between the sidebands will depend on

the thickness of the glass as a secondary correction. Thus the ray passing
through the center of a converging lens 51 will produce a slightly larger differ-

ential phase shift between the upper and lower sidebands than a ray passing

through the outer edge of the lens. This results in a distortion of the beat

note wavefront 56 with more delay near the optical axis.
[0137] It will be recognized that distortion of the beat note wavefront

will depend on a number of parameters, including the f number, i.e., the ratio

of the focal length to the diameter of the lens. For example, a fast lens with
speed f/1 would have a much shorter radius of curvature than a slower f/100

lens, which would almost be flat.

[0138] From the principle of reversibility, to produce a coherent wave-

front at the focal point 55 of FIG. 6, the entering wavefront of the carrier
53, upper sideband 54, and lower sideband 55 would have to be distorted the

same as shown in FIG. 6. However, if the wavefront was flat, the spherical

wavefronts 54 converging on a detector at the focal point 55 would not be

homogeneous, i.e., the phase of the signal at the beat note frequency pro-
duced by a detector at the focal point 55 would depend on which portion of

the wavefront was collected by the detector.

[0139] FIG. 6 presents a good illustration as to why the effects of
dispersion were developed from first principles. Notice that there are two

dominant salient points that a designer needs to consider in an optical design

for OAM systems.

• The optics must be designed to collect or radiate the power properly.

• The phase and shape of the beat note wavefront must be considered.
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Both of these constraints are clearly unified using the first principles model.
[0140] Most physics and optics books treat dispersion by replacing

the index of refraction n by a group index of refraction ng. Notice that if the

group index of refraction was used in the lens design, an actual lens would
not focus at the theoretical focal length! It is implied that a designer use the

index of refraction n for the optical design, and if there is a need to explain

the group delay, use ng as an ad hoc explanation to correct for dispersion.

In fact, a two pass design is probably an acceptable way to proceed, but the
designer needs to understand the fundamentals in order to understand the

limitations of such an ad hoc approach.

[0141] If the entire projected beam is reflected by a target, such as
a retroreflector, and the collection lens gathers all of the return beam and

focuses it on a detector, the wavefront distortion would simply be a constant

that can be corrected. This would also be the case for a length of optical

fiber, where the various delays would be mixed and averaged by the fiber.
[0142] However, it is clear that if any of the beam is obstructed;

the target does not retroreflect the entire beam; the return beam is larger

than the collection lens; the beam size varies with conditions–such as the
distance to the retroreflector, or the size of the retroreflector; or atmospheric

turbulance causes the beam to jitter–the integrated phase on the detector will

not be invariant. The phase of the integrated signal will depend on which

portions of the inhomogeneous beam are collected at the detector.
[0143] For example, the beat note of the beam passing through the

optical axis is delayed more than the beat note of the beam passing through

the edge of the lens, thus the rays through the optical axis are virtually

reflected from farther away than rays passing through the edges of the lens.
By closing an iris around the lens, the virtual distance (time delay) would

appear to increase due to the attenuation of the faster, or leading, rays while

maintaining the slower, or lagging, rays. At longer distance, the divergence of
the beam could result in non-linearity of the phase as a function of distance.

[0144] The size of the retroreflector can have an effect on the ap-

parent distance. For example, a retroreflector will return a beam reflected

about the centerline. If the retroreflector is in the center of an inhomoge-
neous beat note wavefront, the phase at the center is not the same as the
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edges. If a measurement is taken, and the retroreflector is then replaced by
a larger retroreflector, additional power of yet another phase is integrated at

the detector, thus the distance will appear to have changed–even if the two

retroreflectors are centered on the same coordinate. Contamination of the
reflecting surfaces of a retroreflector can attenuate parts of the beam, which

can change the phase integrated at the detector.

[0145] In the ’670 EDM instrument, the outgoing beam was reflected

off a small 45◦ mirror mounted on the outside surface of the objective lens.
Thus the outgoing beam did not pass through the lens, and while there was

beat note aberrations due to the beam shaping optics on the laser diode,

there was no beat note aberration introduced to the outgoing beam by the
objective.

[0146] In most commercial EDM instruments, the outgoing beam

shares at least a portion of the optical train with the receiving optics train. It

should be pointed out that the principle of reversibility does not hold between
the outgoing beam and the return beam, i.e., the beat note aberrations do

not cancel for a reflected signal.

[0147] Returning to FIG. 6, if the phase of the outgoing beat note 56
on the optical axis lags the phase for the beam near the edge of the objective;

on reflection by mirror 57, the return beam 58 will be a mirror reflection of 56

and also lag on the optical axis, where it will undergo additional lag through

the optical train, thus increasing the aberration at the focal point 55. Thus
if a beam splitter is used in front of the focal point 55 and a detector is

placed in the split path, the distortion would be double the distortion of the

outgoing beat note 56. It is clear that the optical designer must also consider

both paths for optics that share parts of the optical train. Of course, if the
optics train produces a flat beat note wavefront, and the return optics is

symmetrical, the beat note aberration will be corrected.

[0148] The example given above shows that the magnitude of the
effect can be of the order of a delay corresponding to a percent of the wave-

lenth of the modulation signal. For modern EDM instruments that strive to

achieve phase measurements of the order of a part in 105 of the modulation

frequency and error budgets in the order of a few microns, this is a signif-
icant source of error. Unlike some random sources of error, the beat note
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aberration can be minimized by a properly designed optical system.
[0149] Henceforth the general undesirable effects of dispersion of

a beat note will be referred to as Optical Amplitude Modulation (OAM)

aberration in order to distinguish the effects from time-invariant aberrations.

5.6 Wavefront Through a Flat Plate in a Converging Beam

[0150] As shown hereinabove, a flat plate in a parallel beam produces
a constant beat note phase delay homogeneously across the parallel beam. It

is well known in the art that a flat plate, a cube beamsplitter, or the like,

in a converging beam, produces an offset in the focal point of the converging

beam. This is illustrated in FIG. 7 where rays 70 passing through converging
lens 71 would converge to focal point 73. By adding flat window 72 in the

converging beam, the rays 70 are bent according to Snell’s law on entering and

exiting window 72. The net result is that the beams 70 converge to a shifted

focal point 74. This is explained in detail in Chapter 7 of Modern Optical
Engineering, Warren J. Smith [19], the disclosure of which is incorporated by

reference herein. Section 7.8 states on page 134;

When used in parallel light, a plane parallel plate is completely free

of aberrations (since the rays enter and leave at the same angles).
However, if the plate is inserted in a convergent or divergent beam,

it does introduce aberrations. The longitudinal image displacement

(n−1)t/n is greater for short wavelength light (higher index) than for
long, so that overcorreted chromatic aberration is introduced. The

amount of displacement is also greater for rays making large angles

with the axis; this is, of course, overcorrected spherical aberration.

[0151] Smith continues to give the equations for various aberrations

which will not be reproduced herein. As shown by Smith, a flat plate 72 in a
converging beam produces spherical aberration. As will be shown hereinbe-

low, this can be designed to correct for spherical aberration of a lens 71. If

the plate is tilted, it can also produce other aberrations. As shown in FIG.
7, the converging rays at angles travel farther through the plate than rays

parallel to the optical axis. Thus a flat plate, cube beamsplitter, or the like,

in a converging beam also produces OAM aberration, due to the variable
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path lengths through the glass for the variable angles.

5.7 Methods for Correcting Optical Amplitude Modulation Aberration

[0152] Having thus identified and explained the subtle but significant
source of error in OAM systems, methods will be given to minimize the impact

on an instrument.

5.7.1 Reflective Optics

[0153] One solution is to use only reflective optics, which do not exhibit

dispersion. It would be practical in a number of EDM instrument designs
to simply adopt optical designs using reflective optics for the collimating op-

tics, i.e., architectures similar to optical and radio telescopes, radar systems,

microwave systems, or the like.
[0154] For example, as shown in FIG. 8, a plane wave 82 comprising

a flat carrier, flat upper sideband, and flat lower sideband traveling in a ray

81 would be reflected by a parabolic reflector 83 to a focal point 84. Since

the reflector 83 does not exhibit dispersion, rays 81 of all wavelengths would
be in phase at the focal point 84. It will be recognized from the principle of

reversibility that the same would be true for a source at the focal point 84.

5.7.2 Match Carrier to Minimal Dispersion Regions of the Optical Material

[0155] Another solution would be to find materials and operating wave-

length combinations with minimal dispersion. US 7,268,880 (’880) to Hin-
derling, the disclosure of which is incorporated by reference herein, teaches

exploiting molecular resonances to increase the effect of dispersion for a two

carrier EDM system. Figure 3 of ’880 showes resonances in the index of re-
fraction of atmospheric gas, due to O2, with local maxima and minima in the

neighborhood of 760 nm.

[0156] As shown in FIG. 9, for n 92 plotted against ν 91, if the

carrier frequency 96 is matched to a local maxima 93, 94 or minima 95 for
an optical material, or if the material could be custom designed to match

the carrier frequency, dn/dν = 0, at the carrier frequency, i.e., there is no
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dispersion for the sidebands 97, 98, i.e., n is the same for the sidebands 97,
98.

5.7.3 Computer Modeling Tools

[0157] Smith [19] describes the synthesis of optical system design in
Chapter 16. He describes one process as an optimization process where the

change in aberration ∆An is described in his Eq. 16.15

∆An =
i=k∑

i=1

(
δAn

δC

)

i
∆Ci (76)

where ∆Ci is the change in parameter Ci required to produce a change and

(δAn/δC)i is the partial of the aberration An with respect to Ci.
[0158] In section 16.8, the disclosure of which is incorporated by

reference herein, Smith describes the process.

The computer is presented with an initial prescription and a set of

desired values for a limited set of aberrations. The program then
computes the partial differentials of the aberrations with respect to

each parameter (curvature, spacing, etc.) which is to be adjusted,

and establishes a set of simultaneous equations (Eq. 16.15), which

it then solves for the necessary changes in the parameters. Since
this linear solution is an approximate one, the computer then applies

these changes to the prescription (assuming that the solution is an im-

provement) and continues to repeat the process until the aberrations
are at the desired values. When there are more variable parameters

than system characteristics to be controlled, there is no unique so-

lution to the simultaneous equations; in this case, the computer will

add another requirement, namely that the sum of the squares of the
(suitably weighted) parameters changes be a minimum.

[0159] As described in the background hereinabove, computer model-

ing tools such as ZEMAX, CODE-V, Optica 3, US 7,469,202, US 2009/0143874

and others are well known in the art to perform time-invariant processes like

this.
[0160] However, there are no known products that include corrections

for OAM aberrations. They would need to be modified slightly to include a
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∆An term for OAM aberration. One possible method is shown in FIG. 10.
The initial prescription 101 for the optical system would need to be defined.

This would include such things as focal length, beam size, aperture size,

wavelength, etc. The optical system could be designed using conventional
design techniques for the carrier frequency, or average frequency of a band

102. The conventional design could then be enhanced by including modeling

of the beat note 103. The design could also be modeled for the conventional

time-invariant parameters 104. The combination of models 103, 104 could
then be evaluated for optimization 105. If the design meets the criteria for

time-invariant 104 and beat note 103 constraints, the process is complete

106, If not, parameters are modified 107, and the process is repeated until
the process is complete 106 and the results are recorded 108.

[0161] For example; for an EDM system, in addition to the time-

invariant requirement for focusing the power to a point on the detector, the

software could also add a term for a requirement such as

Φ =

∫
A ρφ da
∫
A ρ da

(77)

where Φ is the integrated phase of the signal at the detector weighted by

the power; ρ is the optical power density, and φ is the phase of the beat

note wavefront over area da, and A is the area of the aperture. It will be

recognized by those skilled in the art that other requirements may be made
for various design constraints.

[0162] The ideal condition would be for φ to be invariant over any

area da of the beam, i.e., for φ to be flat over the entire beam. This would
be relatively simple for a reflective optics system, but possibly not practical

in a dioptic system.

[0163] A possible design criteria could include the condition that

dΦ/da < ε (78)

where ε is an acceptable OAM aberration. Another possible design criteria

would be to assume a beam profile for ρ, such as a Gaussian with a specified

full width at half maximum, or a flat profile. The standard deviation σ of φ for
uniformally sampled regions over the area A of the lens, for selected carrier

frequencies and modulation frequencies, would be a number that could be
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specified for a standard catalog item lens that would be helpful to a designer.
For example, knowing the σ for common laser carrier frequencies and various

modulation frequencies for a stock lens would be very useful in the design of

an optical system.
[0164] Other methods for correcting OAM aberrations described

hereinbelow would depend on computer modeling tools equipped to model

OAM and beat note wavefront analysis.

5.7.4 Achromatic Lenses

[0165] Yet another solution would be to compensate the optics by using
plural materials with different dispersions. For example, it is well know in the

art to use doublet, triplet, or multiple element lenses made of plural materials

to correct for chromatic aberrations, i.e., achromatic lenses. This is explained
in chapter 9 of Jenkins and White [3], the disclosure of which is incorporated

by reference herein. However, when people think of achromatic lenses they

are usually thinking about lenses designed for colors such as red and blue. As

shown hereinabove the frequency at the C red line is νC = 456 810.9 GHz, and
the frequency at the F blue line is νF = 616 688.5 GHz, or νF −νc = 159 877.6

GHz. This is a bandwidth of the order of 105 times greater than typical

modulation frequencies for EDM.

[0166] However, the same principles that are used to design an achro-
mat over νF − νc = 159 877.6 GHz, as illustrated in an example on pages 181

and 182 of Jenkins and White, can be employed to design an achromat for

much narrower bandwidths, such as 1.5 GHz. An achromat lens designed for
the upper and lower sidebands of a OAM carrier will produce a flat beat note

wavefront.

[0167] For example, turning to FIG. 6. If the lens 51 was designed

to be achromatic for the sidebands 54, 55, the sidebands 54, 55 and the
beat note 56 would all be flat, and there would be no OAM aberration.

[0168] US 6,665,116 and US 7,088,503 to Harvey et al., the disclosure

of both of which are incorporated by reference herein, teach an achromatic
lens for millimeter-wave and infrared bands using a similar technique. How-

ever there is no suggestion of using the technique to optimize the phase of a

beat note produced by the two wavelengths.
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[0169] It is also well know in the art that another method for correct-

ing chromatic aberration, is to use two thin lenses made of the same material
and separated by a distance equal to half the sum of their focal lengths, as

described in section 9.14 “Separated Doublet” of Jenkins and White [3], the

disclosure of which is incorporated by reference herein.

5.7.5 Flat Plate in a Converging Beam

[0170] Still another solution would be to use a flat plate in a converging
beam. As shown hereinabove and in FIG. 7, a window in a converging beam

can be used to correct spherical aberration. The same technique can be used

to correct for OAM aberrations. In FIG. 7, a beam 70 through the outer
edge of lens 71 passes through less glass than a beam through the optical

axis. However, the outer beam 70 passes through more glass in the window

72, which could be used to compensate for the OAM aberration of the lens

71. It will be recognized that lens 71 could be a plano-convex lens and the
window 72 could be cemented to the lens 71 to construct an assembly and

minimize reflections.

[0171] In fact, a number of EDMs use cube beamsplitters in a con-
verging beam to split the return beam to the detector. For example: US

5,440,112 to Sakimura et al.; US 6,333,783 to Ohishi; US 7,081,917 to Shi-

moyama et al.; US 7,443,495 to Hertzman et al.; US 7,626,690 to Kumagai et

al.; and many others use beamsplitters in the optical train which potentially
compensate for OAM aberrations produced by other optical elements, such

as lenses. However, there are no known suggestions that these beam splitters

were incorporated to intentionally correct OAM aberrations.

5.7.6 Kellner-Schmidt Corrector Plate

[0172] Yet another solution is to use a corrector plate. Jenkins and
White [3] describes the Kellner-Schmidt optical system in section 10.20, the

disclosure of which is incorporated by reference herein. Born and Wolf [4]

also describes the use of corrector plates in section 6.4, the disclosure of which

is incorporated by reference herein. US 969,785 to Kellner uses a corrector
plate to correct the spherical aberration of a spherical mirror. In some optical

designs, a similar corrector plate may be used to correct OAM aberration.
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In some designs, a Fresnel lens could also be used as a corrector plate, or as
the main lens.

5.8 Engineering data

[0173] In addition to modeling components and systems as described

hereinabove, and providing engineering data related to OAM parameters,

such as wavefront distortion of the beat note at specified carrier frequencies,
the standard deviation of the phase of the beat note for ideal flat wavefronts,

and the like; experimental measurements could be used to confirm a model.

[0174] As explained hereinabove, a simple experiment is to open and

close an iris to block portions of the beam while monitoring the phase at
the detector. One problem with this method is that it is hard to identify if

the problem is the optical system or the illumination beam, i.e., wavefront

distortions in the beam.

[0175] In principle, a narrow collimated modulated source could be
used to map the phase on a detector. However, due to the high precision

required, movement of the source and/or detector is a potential problem.

Simply moving an electrical cable can introduce phase changes of a part in
10−5. FIG. 11A shows one method for mapping the phase over a lens.

Modulated laser 111 is collimated by lens 112 to produce a narrow beam

113. The beam 113 is reflected by a retroreflector 114 and directed to the

lens under test 115. The beam 113 is focused by the lens 115 on a detector
116. The laser is modulated and the detector signal is processed by EDM

electronics which are not shown.

[0176] It is well know in the art that a retroreflector has the property
of reflecting an incident beam into a reflected beam that is parallel to the

incident beam, and offset symmetrically to the vertex of the retroreflector.

The retroreflector 114 is shown as configured to be translated normal to the

beam 113 along axis 117 by a distance 118. In FIG. 11A, the beam 113 is
shown incident on the center of the lens 115. In FIG. 11B, the beam 113

is shown incident on the edge of the lens 115.

[0177] Thus the phase of the detected signal at the detector 116 can
be mapped as a function of the displacement 118 without moving the laser

111 or the detector 116, and using the same beam. While the displacement
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117 is shown in one dimension, it will be understood that the retroreflector
114 can also be moved in the orthogonal direction to map the lens in the

(x, y) plane.

[0178] A simple field test that can be used to evaluate an instru-
ment, such as a total station, is to map the measured distance for a region

around the center of a retroreflector. In one simple case, a total station can

be centered on a retroreflector target. The measured distance would then be

compared to measured distances for cases where the instrument is moved off
center. In the ideal case, the distance should not change until the power drops

significantly. With modern tracking total stations, the test could be auto-

mated to map in a boustrophedon (as the ox plows) pattern and report the
statistics or plot the distance map. While this test would not be sufficient to

diagnose the cause of a problem, it would be sufficient to show that there is no

problem. It could be used as a simple test to compare instruments produced

by different vendors, or incorporated into standards and specifications.
[0179] While various embodiments of the invention have been de-

scribed in examples related to electronic distance measurement, it will be

understood by those skilled in the art that various other embodiments may
use the teachings herein to advantage in other fields without departing from

the spirit and scope of the invention.
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